Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine.

نویسندگان

  • J P Costanzo
  • R E Lee
  • A L DeVries
  • T Wang
  • J R Layne
چکیده

Various marine fishes, amphibians, and reptiles survive at temperatures several degrees below the freezing point of their body fluids by virtue of adaptive mechanisms that promote freeze avoidance or freeze tolerance. Freezing is avoided by a colligative depression of the blood freezing point, supercooling of the body fluids, or the biosynthesis of unique antifreeze proteins that inhibit the propagation of ice within body fluids. Conversely, freeze tolerance is an adaptation for the survival of tissue freezing under ecologically relevant thermal and temporal conditions that is conferred by the biosynthesis of permeating carbohydrate cryoprotectants and an extensive dehydration of tissues and organs. Such cryoprotective responses, invoked by the onset of freezing, mitigate the osmotic stress associated with freeze-concentration of cytoplasm, attendant metabolic perturbations, and physical damage. Cryomedical research has historically relied on mammalian models for experimentation even though endotherms do not naturally experience subfreezing temperatures. Some vertebrate ectotherms have "solved" not only the problem of freezing individual tissues and organs, but also that of simultaneously freezing all organ systems. An emerging paradigm in cryomedicine is the application of principles governing natural cold hardiness to the development of protocols for the cryopreservation of mammalian tissues and organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely th...

متن کامل

A framework for elucidating the temperature dependence of fitness.

Climate warming is predicted to cause large-scale extinctions, particularly of ectothermic species. A striking difference between tropical and temperate ectotherms is that tropical species experience a mean habitat temperature that is closer to the temperature at which fitness is maximized (T(opt)) and an upper temperature limit for survival (T(max)) that is closer to T(opt) than do temperate s...

متن کامل

Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm...

متن کامل

Survival and arm abscission are linked to regional heterothermy in an intertidal sea star.

Body temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity. The relationship between regional heterothermy and the response of ectot...

متن کامل

Effect of exposure to subfreezing temperatures on ethylene evolution and leaf abscission in citrus.

Citrus leaves exposed to subfreezing temperatures evolved ethylene at rates between 0.1 and 38.3 microliters per kilogram fresh weight per hour whereas untreated leaves evolved between 0.01 and 0.50 microliter per kilogram fresh weight per hour. Leaves not injured by freezing temperatures did not abscise, and ethylene evolution was near normal after 2 days. Freeze-injured leaves continued evolv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1995